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has trace equal to 2 + (–2) = 0 and determinant (–4) – (–4) = 0,
2     1 

–4   –2 (    ) # 2.   A = 

Check:   Ax1 =                  = –4x1 ,  Ax2 =                  = x2  (with λ2 = 1),  

and so this means that λ = 0 is the only eigenvalue for A.  Also, A has only one

eigenvector, namely x = 
1 

–2 (  ) , which serves as the basis vector for the null

space of A.  Note this vector is orthogonal to (2, 1), the basis for the row space.

# 4.   A = 

–4    1    2 (    ) 0     1    1

0     0    3 

is a triangular matrix, and so its eigenvalues are given by

the diagonal elements, i.e. λ1 = –4, λ2 = 1, and λ3 = 3.  Using x =                     , the

u ( ) v
w 

equation Ax = λx gives the system –4u + v + 2w = λu, v + w = λv, and 3w = λw.

Thus, we see w can have any value when λ = 3, but otherwise we must have w = 0.

When λ = –4, setting w = 0 in the second equation gives v = –4v, and so v = 0, and
the first equation becomes –4u = –4u, which means we can just take u = 1.

When λ = 1, setting w = 0 in the second equation gives v = v, so v can have any value,
and the first equation gives –4u + v = u, or v = 5u, so we can take u = 1 and v = 5.

Finally, when λ = 3 the first two equations can be written as v + 2w = 7u and w = 2v,
where w can have any value other than zero, since an eigenvector cannot be the zero
vector.  Substituting w = 2v into the first equation gives 5v = 7u, and so the
eigenvector using whole numbers is most easily written using u = 5 and v = 7,
which then gives w = 2v = 14.

Thus, the eigenvectors may be given by x1 =                 , x2 =                 , x3 =                 .( ) 14 
7 
5 ( ) 0 

5 
1 ( ) 0 

0 
1 

( ) 0 
0 

–4 ( ) 0 
5 
1 

and Ax3 =                                       =                  = 3x3 , as required. 

–20 + 7 + 28 (    ) 0 + 7 + 14

0 + 0 + 42 
( ) 42 

21 
15 
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# 10.   A = has trace equal to 1/6 and det(A) = 0 – 2/12 = –1/6, and so                   

# 6.   Given A =                                   , in order to find the eigenvalues we compute the

1     0    4 (    ) 0     1   –2

1    0    –2 

determinant |λI – A| =                                  = (λ – 1)·[(λ – 1)(λ + 2) – 0] + (–4)·[0 + (λ – 1)]                         
λ – 1    0    –4
0     λ – 1    2
–1      0     λ + 2

= (λ – 1)·[(λ – 1)(λ + 2) – 4] = (λ – 1)(λ2 + λ – 6) = (λ – 1)(λ – 2)(λ + 3) .                     

Setting this equal to zero gives the eigenvalues λ1 = 1, λ2 = 2, λ3 = –3.

Again taking x =                    in the equation Ax = λx, we obtain the system
u ( ) v
w 

u  + 4w = λu{    } v – 2w = λv

u – 2w = λw

Setting λ = 1, the first equation gives w = 0, and then the
.    third equation gives u = 0, while the second equation just
     gives v = v.  Thus, we can take x1 = <0, 1, 0>T.

Next, setting λ = 2, the first equation gives u = 4w, and the second equation gives
     v = –2w,  and so we can take x2 = <4, –2, 1>T.  Finally, setting λ = –3, the first
     and third equations both give u = –w, while the second equation gives w = 2v,
     and so we can take x3 = <2, –1, –2>T.

1/6    1/4 (     ) 2/3      0   

the characteristic polynomial for A is given by λ2 – (1/6)λ – 1/6 = (λ – 1/2)(λ + 1/3),

which gives λ1 = 1/2 and λ2 = – 1/3 as the eigenvalues for A.

Setting x = <u, v>T and λ = 1/2, the equation Ax = λx gives u/6 + v/4 = u/2, or
2u + 3v = 6u, giving 3v = 4u, which means u/v = 3/4.  Rather than using whole
numbers, this time I’ll use the fractional form of A to give this eigenvector as
x1 = <1/4, 1/3>T.  Similarly, taking λ = –1/3, we have u/6 + v/4 = –u/3, or 2u + 3v = –4u,
and so v = –2u, so I’ll take x2 = <1/2, –1>T.  Thus, using these eigenvectors as the 
columns of the transformation matrix P, we have

1/4    1/2 (     ) 1/3     –1   
P =                         , with det(P) = –1/4 – 1/6 = –5/12 and P–1 = (12/5)                         .

1      1/2 (     ) 1/3   –1/4   

Thus, we have P–1AP = (12/5) 
1      1/2 (     ) 1/3   –1/4   

1/6    1/4 (     ) 2/3      0   

1/4    1/2 (     ) 1/3     –1   

= (12/5)                                               = (12/5)                         =                         ,
1/2    1/4 (     ) –1/9   1/12   

1/4    1/2 (     ) 1/3     –1   
5/24    0 (     ) 0  –5/36   

1/2     0 (     ) 0    –1/3   

which shows A is symmetric to its eigenvalue matrix and A is diagonalizable.
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# 12.   A =                                    is a symmetric matrix, which means all its eigenvalues

3    –2     2 (    ) –2      0    –1

2    –1     0 

We have |λI – A| =                                  = (λ – 3)·(λ2 – 1) – 2(2λ + 2) + (–2)(2 + 2λ)
λ – 3    2    –2

2       λ      1
–2      1      λ

= (λ + 1)·[(λ – 3)(λ – 1) – 4 – 4] = (λ + 1)(λ2 – 4λ – 5) = (λ + 1)2(λ – 5) .                     

Thus, λ = –1 is a repeated eigenvalue, with the other being λ = 5.  This does not mean A is
nondiagonalizable, indeed we know A is diagonalizable because it is a symmetric matrix.

Taking x = <u, v, w>T and λ1 = 5, we have 2u – v = 5w and –2u – w = 5v from Ax = λx.
Adding these two equations gives –(v + w) = 5(v + w), which shows v + w = 0.  Thus, we
can take w = 1, v = – 1, and u = 2, giving x1 = <2, –1, 1>T as our first eigenvector.
Next, setting λ = –1, we have the three equations 3u – 2v + 2w = –u, –2u – w = –v,
and 2u – v = –w.  All three of these equations gives the same condition, 2u = v – w,
and if we take w = 0 this gives x2 = <1, 2, 0>T , which is orthogonal to x1.

Now we need a third eigenvector, which also uses λ = –1.  Many of you chose x = <–1, 0, 2>T, 
which does solve Ax = –x and is also orthogonal to x1, but this choice is not orthogonal to x2.     
We can use the cross product to find a vector orthogonal to two given vectors, so if we calculate

must be real numbers.  This also means A is not only diagonalizable, it must be
orthogonally diagonalizable, i.e. there is an orthogonal matrix P, with det(P) = 1
and P–1 = PT, such that PTAP is a diagonal matrix formed from the eigenvalues
of A.  (Again, the columns of P use the corresponding eigenvectors.)

1      2      0
2    –1      1

x3 = x2 x x1 =                         = <2, –1, –5>T we are lucky enough to find another vector

which also solves Ax = –x.  Note: the textbook says to use the Gram-Schmidt process, but if
the cross product happens to also give a solution then we might as well use it.  Thus, using the
eigenvectors x1, x2, x3 as the columns of the transformation matrix we have

P =                                    , which does have orthogonal columns but is not an orthogonal

2     1     2 (    ) –1     2   –1

1     0   –5 

matrix because det(P) = –30 and P–1 = (1/30)                                    , not the same as PT.

10    –5     5 (    ) 6      12     0

2      –1   –5 

In order to make P orthogonal we would have to make unit vectors out of x1, x2, x3, which 
would involve a lot of square roots.  However, using P as I have written it we do have 
P–1AP equal to the diagonal matrix with 5, –1, –1 along the diagonal, as required.
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The eigenvectors are orthogonal, and both have norm equal to the square root of 34.
Thus, letting α denote the square root of 34, the transformation matrix is given by

We also have PTAP = (1/34) 

as required.

# 44.   Oh, I am so tired from typing all of this up.  Most of you who got this far got this
           problem correct, a 3 x 3 matrix with eigenvalues 0, –3, 6 and corresponding eigenvectors
           <1, 0, 1>T, <0, 1, 0>T, <1, 0, –1>T, which form an orthogonal basis for R3.  Letting α
           denote the square root of 2, the orthogonal transformation matrix is given by

λ1 = 17 and λ2 = –17, with corresponding eigenvectors x1 =                and x2 =                .

P = (1/α)                                    , which is symmetric and is equal to its own inverse,

1      0     1 (    ) 0     α     0

1     0    –1 

and it is easy to verify that  P–1AP has the required diagonal form.

is another symmetric matrix, with trace equal to zero and
8     15 

15    –8 (    ) # 42.   A = 

det(A) = –64 –225 = –289 = – (172), and so the eigenvalues for A are given by

5 

3 (  ) –3 

5 (  ) 

P = (1/α)                      , which is orthogonal with det(P) = 1 and P–1 = PT.
5   –3 

3     5 (    ) 
5   –3 

3     5 (    ) 5    3 

–3   5 (    ) 8     15 

15    –8 (    ) 
= (1/34)                                          = (1/2)                                          =                      ,

5   –3 

3     5 (    ) 85    51 

51  –85 (    ) 5    3 

3  –5 (    ) 5   –3 

3     5 (    ) 17    0 

0   –17 (    ) 
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