University of Memphis MATH 3242 Linear Algebra Spring 2025 Dwiggins

Homework Assignment #3

Chapter Four: Vector Spaces

#4.
$$\mathbf{u} = <0, 1, -1, 2>, \mathbf{v} = <1, 0, 0, 2>$$

(a)
$$\mathbf{u} + \mathbf{v} = \langle 0+1, 1+0, -1+0, 2+2 \rangle = \langle 1, 1, -1, 4 \rangle$$
 (b) $2\mathbf{v} = \langle 2, 0, 0, 4 \rangle$

(c)
$$\mathbf{u} - \mathbf{v} = <-1, 1, -1, 0>$$
 (d) $3\mathbf{u} - 2\mathbf{v} = <0, 3, -3, 6> -<2, 0, 0, 4> = <-2, 3, -3, 2>$

8.
$$\mathbf{u} = <1, -1, 2>$$
, $\mathbf{v} = <0, 2, 3>$, $\mathbf{w} = <0, 1, 1>$
If $3\mathbf{u} + 2\mathbf{x} = \mathbf{w} - \mathbf{v}$, then $<3, -3, 6> +2\mathbf{x} = <0, -1, -2>$, which gives $2\mathbf{x} = <-3, 2, -8>$, and so $\mathbf{x} = <-1.5, 1, -4>$.

12.
$$\mathbf{u}_1 = \langle 1, -2, 1, 1 \rangle$$
, $\mathbf{u}_2 = \langle -1, 2, 3, 2 \rangle$, $\mathbf{u}_3 = \langle 0, -1, -1, -1 \rangle$

We can use inner products to show \mathbf{u}_1 is orthogonal to both \mathbf{u}_2 and \mathbf{u}_3 :

$$\mathbf{u}_1 \cdot \mathbf{u}_2 = -1 - 4 + 3 + 2 = 0$$
 and $\mathbf{u}_1 \cdot \mathbf{u}_3 = 0 + 2 - 1 - 1 = 0$, while $\mathbf{u}_2 \cdot \mathbf{u}_3 = 0 - 2 - 3 - 2 = -7$.

Also note that if we form a linear combination of \mathbf{u}_1 and \mathbf{u}_2 , the way to get 0 as the first component is to simply add $\mathbf{u}_1 + \mathbf{u}_2$, and this does not give \mathbf{u}_3 . Thus, these three vectors are linearly independent, and they span a three-dimensional subspace of \mathbf{R}^4 . Finally, we want the three values of $\mathbf{u}_1 \cdot \mathbf{u}_1 = 1 + 4 + 1 + 1 = 7$, $\mathbf{u}_2 \cdot \mathbf{u}_2 = 1 + 4 + 9 + 4 = 18$, and $\mathbf{u}_3 \cdot \mathbf{u}_3 = 0 + 1 + 1 + 1 = 3$.

Now let
$$\mathbf{v} = \langle 4, -13, -5, -4 \rangle$$
, and calculate $\mathbf{v} \cdot \mathbf{u}_1 = 21$, $\mathbf{v} \cdot \mathbf{u}_2 = -53$, $\mathbf{v} \cdot \mathbf{u}_3 = 22$.

We want to see if \mathbf{v} lies in the space spanned by $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$, which means we want to find scalars \mathbf{c}_1 , \mathbf{c}_2 , \mathbf{c}_3 which will give $\mathbf{v} = \mathbf{c}_1 \mathbf{u}_1 + \mathbf{c}_2 \mathbf{u}_2 + \mathbf{c}_3 \mathbf{u}_3$. Because \mathbf{u}_1 is orthogonal to both \mathbf{u}_2 and \mathbf{u}_3 , the easiest way to find \mathbf{c}_1 is to take the inner product of both sides of this equation with \mathbf{u}_1 , which gives $\mathbf{v} \cdot \mathbf{u}_1 = \mathbf{c}_1 \mathbf{u}_1 \cdot \mathbf{u}_1 + 0 + 0$, or $21 = 7\mathbf{c}_1$, and so we have $\mathbf{c}_1 = 3$.

Next, we have $\mathbf{v} \cdot \mathbf{u}_2 = 0 + c_2 \mathbf{u}_2 \cdot \mathbf{u}_2 + c_3 \mathbf{u}_3 \cdot \mathbf{u}_2$, which gives $18c_2 - 7c_3 = -53$, and $\mathbf{v} \cdot \mathbf{u}_3 = 0 + c_2 \mathbf{u}_2 \cdot \mathbf{u}_3 + c_3 \mathbf{u}_3 \cdot \mathbf{u}_3$, which gives $-7c_2 + 3c_3 = 22$. Solving this 2 x 2 system of equations gives $c_2 = -1$ and $c_3 = 5$, and so we have $\mathbf{v} = 3\mathbf{u}_1 - \mathbf{u}_2 + 5\mathbf{u}_3$, which does check out correctly.

#38.
$$A = \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$$
 implies $det(A) = 2 - 12 = -10$ is not equal to zero,

which means A is a matrix of full rank. Thus, the null space of A is simply $\{0\}$ (since the only solution to AX = 0 is X = 0), the nullity of A is zero, and the rank of A is 2.

$$\# 40. \ A = \begin{pmatrix} 1 & 0 & -2 & 0 \\ 4 & -2 & 4 & -2 \\ -2 & 0 & 1 & 3 \end{pmatrix} \longleftrightarrow \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & -2 & 12 & -2 \\ 0 & 0 & -3 & 3 \end{pmatrix} \longleftrightarrow \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & -6 & 1 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$

If we set
$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

and solve the homogeneous equation AX = 0, then the bottom row in the reduced row echelon matrix shows we must have $x_4 = x_3$, while the top row gives $x_1 = 2x_3$. Substituting these into the middle row gives $x_2 = 5x_3$, and so the null space

for A is the one-dimensional subspace of \mathbb{R}^4 spanned by

We can also see from the reduced row echelon matrix that the row space of A is spanned by three vectors in \mathbb{R}^4 , and so we have the nullity and rank of A satisfying 1 + 3 = 4, which gives the number of columns of A, as required.

44.
$$A = \begin{pmatrix} 2 & -1 & 4 \\ 1 & 5 & 6 \\ 1 & 16 & 14 \end{pmatrix} \longleftrightarrow \begin{pmatrix} 2 & -1 & 4 \\ 0 & 5.5 & 4 \\ 0 & 16.5 & 12 \end{pmatrix}$$
 This row reduction is obtained using $-0.5*R1 + R2 = New R2$ and $-0.5*R1 + R3 = New R3$.

In the reduced row echelon matrix, the third row is three times the second row, and so the rank of A is equal to 2. The row space is spanned by the first two rows of A.

58. The linearly independent vectors in $B' = \{<2, 2>, <0, -1>\}$ form a two-dimensional subspace of \mathbb{R}^2 . The standard unit vectors in \mathbb{R}^2 are <1,0> and <0,1>. In terms of B', we have <1,0> = 0.5*<2, 2> + 1*<0, -1> and <math><0,1> = 0*<2, 2> + (-1)*<0, -1>.

Thus,
$$\mathbf{x} = <-1$$
, $2 > = (-1) < 1, 0 > +2 < <0, 1 > = (-0.5 + 0) < <2, 2 > + (-1 - 2) < <0, -1 > ,$

and so the coordinates of **x** relative to the given basis are given by $[\mathbf{x}]_{B'} = \begin{pmatrix} -0.5 \\ 2 \end{pmatrix}$.